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Stratospheric ozone

● Polar ozone continues to experience significant springtime depletion
● The near-global ozone column (excluding the polar regions) remained largely constant 

since ozone decline stopped near the turn of the century 
○ Some positive trends are now emerging in the SH [Weber et al., 2022]
○ Total (or even stratospheric) column ozone doesn’t tell the whole story

■ Tropospheric trends, circulation changes complicate the picture

● Stratospheric ozone trends are altitude-dependent
○ The decline of ozone-depleting substances (ODSs) is not necessarily the primary driver
○ Increasing greenhouse gas (GHG) concentrations are expected to:

■ Cool the stratosphere → slow reaction rates → reduce depletion in the upper stratosphere
■ Accelerate the Brewer-Dobson circulation (BDC) → enhance upwelling, change circulation patterns in 

the lower stratosphere



Upper stratospheric recovery

● Statistically significant at 1-3 %/decade
● Greatest confidence in NH

○ Variable across datasets

● Contribution of ODS decline and GHG 
increase is about equal [WMO, 2018]

● In agreement with chemistry climate model 
(CCM) predictions

● Different story in the lower stratosphere
○ CCMs predict decline in tropics, increase at 

mid-latitudes (enhanced upwelling)
○ Most satellite datasets don’t exactly agree Figure 5.2 from the LOTUS report [Petropavlovskikh et al., 2019]: 

ozone trends for 2000-2016.



Lower stratospheric decline

● Controlled by dynamics, not ODS concentrations
● Tropics: most datasets indicate negative trends
● Northern mid-latitudes: also negative, more than 

offsetting recovery at higher altitudes
○ Non-linear quasi-biennial oscillation (QBO) interactions [Ball et 

al., 2018, 2019]
○ Enhanced isentropic mixing [Wargan et al., 2018]
○ Expansion of upwelling [Orbe et al., 2020]

● Natural variability impacts trend estimates
○ Large anomalies might change trend results from year to year 

[Chipperfield et al., 2018]
○ Strong seasonality is present [Szeląg et al. 2020]

Figure 3 of Ball et al. [2018]: 1985-2016 
ozone trends from the BASIC composite.



Challenges, motivations

● Magnitude and significance (even the sign at low altitudes) of stratospheric ozone 
trends is still in question

○ Long-term datasets are required: combine a variety of measurement methods, viewing geometries, 
and sampling patterns. Combine how?

○ Time periods, fit methods have a major impact on trend results

● To address this:
○ We combine sampling-corrected datasets from similar instruments
○ Carefully assess trend significance using external data (MLS measurements)
○ Compare results from two fitting methods

● SAGE II – OSIRIS – SAGE III/ISS (SOS) composite
○ First inclusion of SAGE III/ISS in a published dataset



Methodology



The SOS composite

● Monthly zonal mean (MZM) data
● Tropopause filter prior to merging

○ Lapse rate tropopause height for each ozone profile
calculated from MERRA-2 temperatures

○ Use second tropopause when present
○ Only data above the tropopause height is considered

● Merge MZM relative anomalies [Bourassa et al., 2014, 2018]
○ Each dataset is deseasonalized independently
○ SAGE datasets are adjusted such that differences w.r.t OSIRIS in the overlap periods are zero

● Common grid 10° latitude by 1 km altitude
○ Grid centers of 13-50 km, 60° S - 60° N 
○ Lower boundary adjusted to mean + 1σ tropopause height

Dataset Coverage

SAGE II v7.0 1984 – 2005

OSIRIS v7.2 2001 – 2021

SAGE III/ISS v5.2 2017 – 2021



The SOS composite – OSIRIS v7.2

● New data version
○ An update of v5.10 ozone

● New fit method (Levenberg-Marquardt alg.)
● Point spread function correction

○ Reduces temperature-dependent effects

● Updated inputs; optimized retrieval
● Compared to v5.10: 

○ Minor changes, excellent correlation
○ SZA-dependent bias removed
○ Effect of seasonal temperature oscillations reduced

● Only using descending node measurements



The SOS composite – sampling correction

● Sampling patterns mean MZM values are biased
● Use MERRA-2 ozone to transfer each profile to the center of 

the month/latitude bin
○ Performed for OSIRIS and SAGE III/ISS
○ Ratio of coincident MERRA-2 profile with MERRA-2 profile at middle of 

month/latitude bin (at the same longitude)
○ Preserves longitudinal and random variability

● Greatly reduces variability along latitude and time axes
○ More noise in tropics, where variability is low
○ Largest changes for bins that are not sampled well
○ No overall sampling bias
○ Reduces effects of changing sampling patterns over time

● SAGE II: sampling-corrected dataset of Damadeo et al. [2018]
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SIII



Trend analysis

● Multiple linear regression (MLR)
○ Two linear components (connected or independent)

■ Endpoint anomalies affect each component
■ Inflection point/period needs to be specified

○ Uncertainties: variance of fit parameters (use 2σ)
○ LOTUS regression model [Petropavlovskikh et al., 2019]

● Dynamic linear model (DLM)
○ Smooth, non-linear trend

■ Endpoint anomalies affect the first/last few years only
■ Inflection point (if exists) is fitted

○ Full uncertainty characterization (assuming model is correct)
○ dlmmc model [Alsing, 2019], also in Ball et al. [2018, 2019]
○ Used for most of the results here



Trend analysis (cont’d)

● Regressors:
○ El Niño index, QBO (2 PCs, with seasonal components), F10.7 cm 

solar index, latitude-dependent aerosol optical depth (GloSSAC v2.1)
○ MLR only: independent linear trends (1984-1996, 2000-2021)

● DLM details:
○ Only the prior on the degree of trend non-linearity is specified
○ Regressor coefficients constant → equivalent to MLR
○ Parameter estimates: 10 000 MCMC samples
○ Ozone change: difference of yearly means for 2000 and 2021 (forms 

a distribution)

● Only the post-2000 trends are considered
○ Fit is performed on entire dataset (1984-2021)
○ MLR trends are scaled to the 2000-2021 period



● Additional constraint on trend 
significance

○ How does significance 
change if potential drifts 
between the datasets are 
taken into account?

○ Plenty of assumptions
● Time series differ, especially in 

lower stratosphere
● Fit the SOS minus MLS 

relative anomalies using DLM
○ Subtract mean trend from 

each SOS trend sample
● Byproduct: validates sampling 

correction

Uncertainties: SOS vs MLS v4.2
Percent change in differences from from 2005 to 2021



SOS ozone trends



● MLR and DLM results are 
generally similar

● Upper stratosphere:
○ Robust ozone recovery

(2-6 % since 2000)
○ As in WMO [2018]

● Middle stratosphere:
○ Smaller increases
○ Hemispheric asymmetry

● Lower stratosphere:
○ Consistent negative trends, 

especially in the tropics
○ Similar to Ball et al. [2018, 

2019]; to a lesser extent 
Szeląg et al. [2020]

2000-2021 ozone trends



● Ozone rate of change, scaled 
to percent per decade

● Turnaround dates center 
around 2000, but are variable

● Linear change is not always a 
good estimate

○ See 40-60° N
● Continuous decline in tropical 

lower stratosphere
○ Minimum values (black dots) 

are in 2021
● Mid-latitude ozone change is 

highly variable
○ 2000 is not a meaningful 

baseline

2000-2021 ozone trends – DLM slopes



● Tropical ozone decline typically associated 
with acceleration of the BDC

● Tropospheric warming leads to tropopause 
height increase

○ Stratospheric circulation is lifted
○ Might explain some of the BDC and 

ozone trends
● Tropopause-relative dataset

○ Each profile is adjusted to the tropopause 
height (prior to averaging or merging)

● Trends in the tropics are reduced in 
magnitude and significance

● Similar to recent ozonesonde trends 
[Thompson et al., 2021]

Tropopause-relative trends



● Change of trend significance when the 
DLM distribution is adjusted with the 
time-dependent SOS-MLS differences

● Trends are robust in most of the upper and 
middle stratosphere

○ No increase at high altitudes: similar to 
Ball et al. [2019]

○ More pronounced asymmetry at ~25-30 
km

● Negative trends in the lower stratosphere 
are likely more significant than SOS data 
indicate

○ Comparisons are less representative due 
to the tropopause filter

Trend significance



● 2010-2021 ozone change from the non-linear 
DLM trends

● No increase at northern mid-latitudes
○ Or in the entire NH middle stratosphere
○ Mostly independent of SOS-MLS differences

● Impact of the dataset end year:
○ Middle stratosphere: large differences 

apparent for 2020, 2021 only
○ Upper stratosphere: same pattern for 

2017-2021
● Longitudinal variability in the NH [Arosio et 

al., 2019; Sofieva et al., 2021]
● BDC upper branch: asymmetric changes, 

long-term variability [Strahan et al., 2020; 
Prignon et al., 2021]

Recent trends – pause in NH recovery?



Conclusions

● Sampling-corrected SAGE II – OSIRIS – SAGE III/ISS composite for near-global trends
○ Using both MLR and DLM for trend fitting: DLM results capture ozone changes better

● Since 2000, upper stratospheric ozone increased by 2-6 %
○ Significant and robust in both hemispheres
○ Pattern extends down to the middle stratosphere in the SH only

● Ozone recovery appears to have paused in the NH during the last decade
○ Not quite long enough to rule out low frequency BDC variability

● Tropical lower stratospheric ozone shows continuous decline since 1984
○ In part due to rising tropopause heights

● At mid latitudes, negative trends extend to ±50° at 17-20 km
○ SOS data likely underestimate significance

● Next steps: detailed CCM comparisons
○ Work ongoing at USask
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